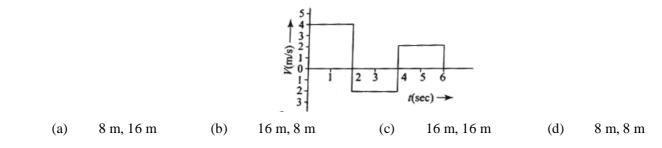


Max. Marks: 300

Date: 21.10.2022

JB 2 MR BATCH PHYSICS : PART TEST SET-A Topic: FLT

- 1. A particle travels 10 m in first 5 sec and 10 m in next 3 sec. Assuming constant acceleration what is the distance travelled in next 2 sec
 - (a) 8.3 m (b) 9.3 m (c) 10.3 m (d) None of above
- A car moving at 160 km/h when passes the mark-A, driver applies brake and reduces its speed uniformly to 40 km/h at mark-C. The marks are spaced at equal distances along the road as shown below.
 At which part of the track the car has instantaneous speed of 100 km/h? Neglect the size of the car.

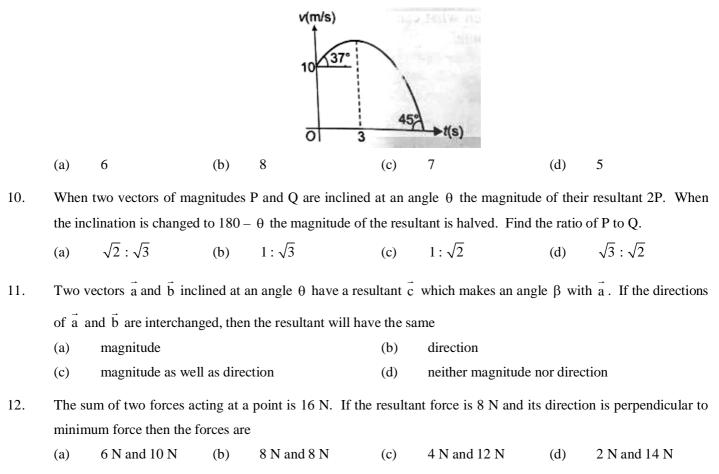

			2					
				Mark-A	Mark-B	Mark-C		
	(a)	At mark-B			(b)	Between mark-A a	and mark-	·B
	(c)	between mark-B a	and mark	-C	(d)	insufficient inform	ation to d	lecide
3.	-	0	0	hight line with consider the distance of the d				h second its velocity e particle will be
	(a)	10 m/s ²	(b)	20 m/s ²	(c)	$\frac{1}{5}$ m/s ²	(d)	3.8 m/s ²
4.	Two ca	ars are moving in t	he same	direction with the	same spee	d 30 km/hr. They	are separ	rated by a distance of
	5 km, t	he speed of a car m	oving in	the opposite directi	on if it me	ets these two cars a	t an inter	val of 4 minutes, will
	be							
	(a)	40 km/hr	(b)	45 km/hr	(c)	30 km/hr	(d)	15 km/hr

An elevator, in which a man is standing, is moving upward with a constant acceleration of 2 m/s². At some instant 5. when speed of elevator is 10 m/s, the man drops a coin from a height of 1.5 m. Find the time taken by the coin to reach the floor.

(a)
$$\frac{1}{\sqrt{3}}$$
 sec (b) $\frac{1}{2}$ sec (c) $\frac{1}{\sqrt{2}}$ sec (d) 1 sec

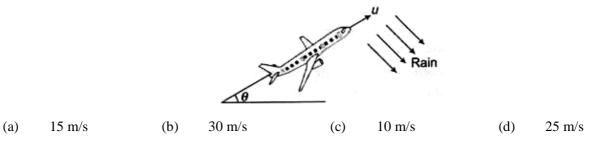
The velocity-time graph of a body moving in a straight line is shown in the figure. The displacement and distance 6. travelled by the body in 6 sec are resepectively

7. The path of a projectile in the absence of air drag is shown in the figure by dotted line. If the air resistance is not ignored then which one of the path shown in the figure is appropriate for the projectile

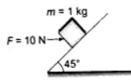

					11	C D x			
(a)	В	(b)	A	(c	:)	D	(d)	С	

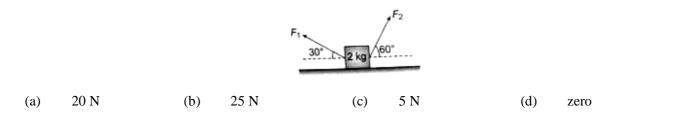
A stone is projected from the ground with velocity 50 m/s at an angle of 30°. It crosses a wall after 3 sec. How 8. far beyond the wall the stone will strike the ground $(g = 10 \text{ m/sec}^2)$? (a

(a)	90.2 m	(b)	89.6 m	(c)	86.6 m	(d)	70.2 m

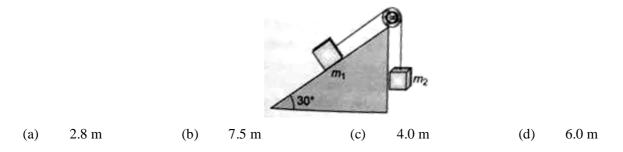


9. A particle starts moving with velocity 10 m/s in a straight line under an acceleration varying linearly with time. Its velocity time graph is as shown in figure. Its velocity is maximum at t = 3 sec. The time (in sec) when the particle stops is (tan $37^\circ = 3/4$)

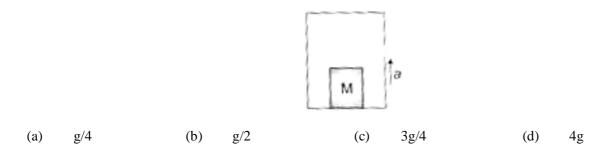


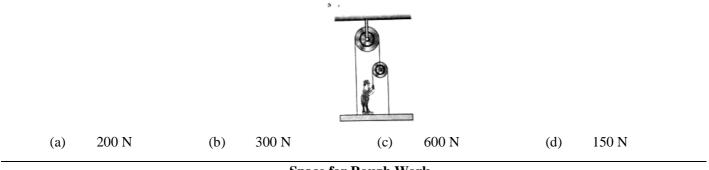

13. Rain is falling with speed $12\sqrt{2}$ m/s at an angle of 45° with vertical line. A man in a glider going at a speed of u at angle of 37° with respect to ground. Find the speed of glider so that rain appears to him falling vertically. Consider motion of glider and rain drops in same vertical plane.

14. A body of mass 1 kg lies on smooth inclined plane. The block of mass m is given force F = 10 N horizontally as shown. The magnitude of net normal reaction on the block is:

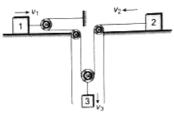


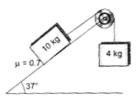
- (a) $10\sqrt{2}$ N (b) $\frac{10}{\sqrt{2}}$ N (c) 10 N (d) None of these
- 15. A body of mass 2.0 kg is placed on a smooth horizontal surface. Two forces $F_1 = 20$ N and $F_2 = N$ are acting on the body in directions making angles of 30° and 60° to the surface. The reaction of the surface on the body will be



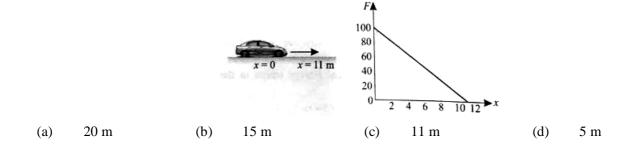

16. M is a fixed wedge. Masses m_1 and m_2 are connected by a light string. The wedge is smooth and the pulley is smooth and fixed. $m_1 = 10$ kg and $m_2 = 7.5$ kg. When m_2 is just released, the distance it will travel in 2 seconds is

17. With what acceleration a should be box of figure moving up so that the block of mass M exerts a force 7 Mg/4 on the floor of the box?


18. In the given diagram, with what force must the man pull the rope to hold the plank in position? Mass of the man is 80 kg. Neglect the weights of plank, rope and pulley. Take $g = 10 \text{ ms}^{-2}$.


Space for Rough Work

19. Three blocks 1, 2 and 3 are arranged as shown in the figure. The velocities of the blocks v_1 , v_2 and v_3 are shown in the figure. What is the relationship between v_1 , v_2 and v_3 ?


- (a) $2v_1 + v_2 = v_3$ (b) $v_1 + v_2 = v_3$ (c) $v_1 + 2v_2 = v_3$ (d) None of these
- 20. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.7. The frictional force on the block is
 - (a) 10 N (b) $7\sqrt{3}$ N (c) $10 \times \sqrt{3}$ N (d) 7 N
- 21. In the arrangement shown in the figure [sin $37^\circ = 3/5$]

- (a) direction of force of friction is up the plane (b) the magnitude of force of friction is zero
- (c) the tension in the string is 20 N (d) magnitude of force of friction is 56 N
- 22. The work done by external agent in stretching a spring of force constant k = 100 N/cm from deformation $x_1 = 10$ to deformation $x_2 = 20$ cm.
 - (a) -150 J (b) 50 J (c) 150 J (d) None of these

- 23. An elastic spring of unstretched length L and force constant K is stretched by amount x. It is further stretched by another length y. The work done in the second stretching is
 - (a) $\frac{1}{2}Ky^2$ (b) $\frac{1}{2}K(x^2 + y^2)$ (c) $\frac{1}{2}K(x + y)^2$ (d) $\frac{1}{2}Ky(2x + y)$
- 24. A toy car of mass 5 kg moves up a ramp under the influence of force F plotted against displacement x. The maximum height attained is given by

25. A slab S of mass m is released from a height h_0 from the top of a spring of force constant k. The maximum compression x of the spring is given by the equation

(a)
$$mgh_0 = \frac{1}{2}kx^2$$

(b) $mg(h_0 - x) = \frac{1}{2}kx^2$
(c) $mgh_0 = \frac{1}{2}k(h_0 + x)^2$
(d) $mg(h_0 + x) = \frac{1}{2}kx^2$

Date: 21.10.2022

JB 2 MR BATCH CHEMISTRY : PART TEST SET-A Topic: FLT

26.	The t	emperature at which	n RMS v	elocity of SO ₂ molect	iles is ha	alf that of He molecul	es at 300	0 K
	(a)	150	(b)	600 K	(c)	900 K	(d)	1200 K
27.	Whic	h is correct with res	pect to 'p	o' orbitals				
	(a)	They are spherica	al		(b)	They have a strong	directio	onal character
	(c)	They are five fold	d degene	prate	(d)	They have no direc	ctional cl	haracter
28.	The n	naximum number of	f electror	ns in an atom with $l =$	2 and n	= 3 is		
	(a)	2	(b)	6	(c)	12	(d)	10
29.	Conta	iners A and B have	e the san	ne gas. Pressure, volu	me and	temperature of A are	all twic	the those of B, then the
	ratio	of number of molec	ules of A	to B is				
	(a)	1:2	(b)	4:1	(c)	1:4	(d)	2:1
30.	The f	ollowing electronic	transitio	n corresponds to the s	shortest	wave length (n = no.	of orbit)	
	(a)	$n5 \rightarrow n1$	(b)	$n5 \rightarrow n3$	(c)	$n5 \rightarrow n2$	(d)	$n5 \rightarrow n4$
31.	What	is the wave number	r of yello	w radiation having w	aveleng	th 5800 Å (in cm^{-1})		
	(a)	$5.17 imes10^{14}$	(b)	$1.7 imes10^4$	(c)	$4 imes 10^{14}$	(d)	$3.4 imes10^{14}$
32.	Photo	electron emission is	s observe	ed from a surface for	frequenc	cies v_1 and v_2 and of t	he incid	ent radiation ($v_1 > v_2$).
	If the	maximum kinetic	energies	of the photoelectrons	s in the	two cases are in the	ratio 1 :	K then the threshold
	frequ	ency v_0 is given by						
	(a)	$\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{K} - 1}$	(b)	$\frac{\mathbf{k}\mathbf{v}_1 - \mathbf{v}_2}{\mathbf{K} - 1}$	(c)	$\frac{\mathbf{k}\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{K} - 1}$	(d)	$\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{K}}$
								K
33.				ns that can be accomm				
	(a)	2	(b)	10	(c)	6	(d)	14

34.	Whicl	ch of the following statements concerning sunlight is false?It is a form of energy(b)It consists of photons of same energy(d)It is a part of electromagnetic spectrum												
	(a)	It is a form of ene	ergy		(b)	It cannot be deflect	ted by a	magnet						
	(c)	It consists of pho	tons of s	ame energy	(d)	It is a part of electr	omagnet	tic spectrum						
35.	Numb	per of waves produc	ed by an	electron in one comp	olete revo	olution in n th orbit is:								
	(a)	n	(b)	n ²	(c)	(n + 1)	(d)	(2n + 1)						
36.	One v	vould expect proton	to have	very large										
	(a)	Ionization potent	ial		(b)	Radius								
	(c)	Charge			(d)	Hydration energy								
37.	Atom	s have a mass of the	order											
	(a)	$10^{-26}{ m kg}$	(b)	$10^{-15} \mathrm{kg}$	(c)	$10^{-26} { m g}$	(d)	$10^{-15} { m g}$						
38.	The e	electronic velocity i	n fourth	Bohr orbit of hydro	gen is V	V. The velocity of e	lectron i	n the first Bohr orbit						
	would													
	(a)	4V	(b)	16V	(c)	V/4	(d)	V/16						
39.	At ST	P 5.6 L of a gas we	igh 60 g	. The vapour density of	of gas is:	:								
	(a)	60	(b)	120	(c)	30	(d)	240						
40.	9 g of	trivalent metal com	bines w	ith 8 g of oxygen. The	e atomic	mass of the metal is								
	(a)	9	(b)	18	(c)	27	(d)	36						
41.	Equiv	valent weight of H ₂ C	₂ is											
	(a)	17	(b)	34	(c)	68	(d)	18						
42.	2 g of	a metal oxide on st	rong hea	tting gave 112 ml of C	D_2 gas at	STP. Equivalent of t	he metal	is						
	(a)	56	(b)	92	(c)	112	(d)	50						
43.				with certain weight o from an acid. The eq				The same amount of						
	(a)	40	(b)	20	(c)	80	(d)	10						

44.	(a) H_2SO_4 (b) H_3PO_2 (c) H_3PO_4 (d) H_3PO_3 .The atomic number of element Unq is : (a)102(b)103(c)104(d)105.Mendeleev predicted the physical and chemical properties of the elements. Eka – boron, Eka – silicon and Eka – aluminium. The elements were discovered respectively as (a)Ge, Sc, Ga(b)Sc, Ge, Ga(c)Al, Ga, Ge(d)Ge, Al, Ga.Lothar Meyer obtained the curve for the known elements by plotting their atomic volumes against (a)atomic numbers(b)atomic masses(c)densities(d)ionization energies.The correct order of the size of C, N, P and S is (a)N < C < P < S(b)C < N < P < S(c)C < N < S < P(d)N < C < S < P											
	(a)	H_2SO_4	(b)	H_3PO_2	(c)	H_3PO_4	(d)	H ₃ PO ₃				
45.	The a	tomic number of ele	ement Ui	nq is :								
	(a)	102	(b)	103	(c)	104	(d)	105				
46.		-				he elements. Eka – b	oron, Ek	ka – silicon and Eka –				
	(a)	Ge, Sc, Ga	(b)	Sc, Ge, Ga	(c)	Al, Ga, Ge	(d)	Ge, Al, Ga				
47.	Lotha	r Meyer obtained th	e curve	for the known elemer	nts by pl	otting their atomic vo	lumes aş	gainst				
	(a)	atomic numbers	(b)	atomic masses	(c)	densities	(d)	ionization energies				
48.	The c	orrect order of the s	ize of C,	N, P and S is								
	(a)	N < C < P < S	(b)	C < N < P < S	(c)	C < N < S < P	(d)	N < C < S < P				
49.	(A), (B) and (C) are elem	ents in t	he third short period.	Oxide	of (A) is ionic, that of	f (B) is a	amphoteric and that of				
	(C) is	a giant molecule. T	hen (A),	(B) and (C) have ato	mic nun	nber in the order						
	(a)	(C) < (B) < (A)	(b)	(A) < (B) < (C)	(c)	(A) < (C) < (B)	(d)	(B) < (A) < (C)				
50.	How	many Cs atoms can	be conv	erted to Cs ⁺ ions by 1	joule er	nergy if IE1 for Cs is 3	876 Kj n	nol^{-1}				
	(a)	$1.6 imes 10^{18}$	(b)	1.6×10^{10}	(c)	5.8×10^{14}	(d)	$5.8 imes 10^{25}$				

Date: 21.10.2022

JB 2 MR BATCH MATHEMATICS : PART TEST SET-A Topic: FLT

51.	The p	product of the roots of	of the eq	uation				
	$x^{2} - 4$	$-mx + 3e^{2\log m} - 4$	= 0 is 8					
	then i	ts roots will be real	when m	equals				
	(a)	$\pm\sqrt{2}$	(b)	±2	(c)	$\sqrt{2}$	(d)	1
52.	The n	umber of solution o	f the equ	ation				
	sin (a	$^{x})+\cos\left(a^{x}\right) =a^{x}+a$	a^{-x} is a >	0				
	(a)	3	(b)	1	(c)	2	(d)	0
53.	If α,	3 are roots of the eq	uation a	$x^2 + 3x + 2 = 0 \ (a < 0)$) then $\frac{0}{2}$	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is greater that	an	
	(a)	2	(b)	1	(c)	0	(d)	None of these
54.	The p	roduct of real roots	of the eq	uation				
	2x +	$3 ^2 - 3 2x + 3 + 2 =$	0 is					
	(a)	2	(b)	$\frac{5}{4}$	(c)	$\frac{5}{2}$	(d)	5
55.	Two	students while solv	ing a qu	adratic equation in x	with le	ading coefficient 'I'	one cop	bied the constant term
	incorr	ectly and got the ro	ots 3 and	12. The other copied	the con	stant term correctly –	6. The c	correct roots are
	(a)	-1,6	(b)	-6, -1	(c)	-2,3	(d)	-3, 2
56.	Ifα	and β are the roots	of equat	ion $8x^2 - 3x + 27 = 0$	then $\left(\frac{c}{c}\right)$	$\left(\frac{\alpha^2}{\beta}\right)^{1/3} + \left(\frac{\beta^2}{\alpha}\right)^{1/3}$ is e	equal to	
	(a)	$\frac{1}{4}$	(b)	$\frac{1}{3}$	(c)	$\frac{7}{2}$	(d)	$\frac{1}{16}$

57.	Ifαa	and β are the roots of	of $x^2 - 2x^2$	$x + 4 = 0$ then $\alpha^5 + \beta$	s ⁵ is equ	ual to		
	(a)	16	(b)	32	(c)	64	(d)	None of these
58.	-	eometric progression on ratio of this prog			s each te	erm equals the sum o	f the nex	at two term. Then the
	(a)	$\frac{1}{2}(\sqrt{5}-1)$	(b)	$\frac{1}{2}\sqrt{5}$	(c)	$\sqrt{5}$	(d)	$\frac{1}{\sqrt{2}}(1+\sqrt{5})$
59.	$1^{3} - 2$	$3^{3} + 3^{3} - 4^{3} + \dots + 9^{3}$	$)^{3} =$					
	(a)	- 475	(b)	425	(c)	475	(d)	-425
60.	If log	$_{0}(3^{1+x}+2), \log_{3}(4+1)$	$+3^{x}-1$)	are in A.P., then x eq	uals			
	(a)	$1 - \log_3 4$	(b)	$\log_4 3$	(c)	$\log_3 4$	(d)	$1 - \log_4 3$
61.	The s	um of the series $\frac{1}{2}$	$+\frac{3}{4}+\frac{7}{8}$	$+\frac{15}{16}+\dots$ upto n term	ns is			
	(a)	$n-1+\frac{1}{2^n}$	(b)	$n + \frac{1}{2^n}$	(c)	$2n + \frac{1}{2^n}$	(d)	$n+1+\frac{1}{2^n}$
62.	If x ² +	$+9y^2 + 25z^2 = xyz \bigg($	$\frac{15}{x} + \frac{5}{y}$	$\left(+\frac{3}{z}\right)$, then x, y and z	are in			
	(a)	A.P.	(b)	G.P.	(c)	A.G.P.	(d)	H.P.
63.	2 ^{1/4} , 4	$^{1/8}$, $8^{1/16}$ up to ∞	is equal	to				
	(a)	1	(b)	2	(c)	$\frac{3}{2}$	(d)	None of these
64.	The s	um of n terms of the	e series					
	$\frac{1}{1+}$	$\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5}}$	$\frac{1}{5+\sqrt{7}}$ +	is				
	(a)	$\sqrt{2n+1}$	(b)	$\frac{1}{2}\sqrt{2n+1}$	(c)	$\sqrt{2n+1}-1$	(d)	$\frac{1}{2}(\sqrt{2n+1}-1)$

65.	The v	alue of ${}^{40}C_{31} + \sum_{j=0}^{10}$	^{40+j} C ₁₀	$_{0+j}$ is equal to				
65. The value of ${}^{40}C_{31} + \sum_{j=0}^{10} {}^{40+j}C_{10+j}$ is equal to (a) 2. ${}^{40}C_{15}$ (b) ${}^{51}C_{20}$ (c) 2. ${}^{50}C_{20}$ (d) None of these 66. The total number of selections of at most n things from (2n + 1) different things is 63. Then the value of n is (a) 4 (b) 3 (c) 2 (d) None of these 67. A total numbers of works which can be formed out of the letters a, b, c, d, e, f taken 3 together such that each word contains at least one vowel is (a) 48 (b) 96 (c) 72 (d) None of these 68. A father with 8 children takes them 3 at a time to zoolugical gardens, as often as he can without taking the same 3 children together more than once. The number of times each child will go to the garden is (a) 112 (b) 21 (c) 56 (d) None of these 69. A dictionary is printed consisting of 7 lettered words only than can be made with a letter of the word CRICKET. If the words are printed at the alphabetical order, as in an ordinary dictionary, then the number of word before the word CRICKET is (a) 481 (b) 530 (c) 531 (d) 480 70. If a, b, c are three natural numbers in A.P. and a + b + c = 21, then the possible number of values of the ordered triplet (a, b, c) is (a) 13 (b) 15 (c) 80 (d) None of these 71. A question paper is divided into two parts A and B and each part contains 5 questions. The number of ways in which a candidate can answer 6 questions selecting at least two questions from each part is (a) 20 (b) 100 (c) 80 (d) None of these 72. The value of $e^{(\log_{10} ect 1^{5+log_{10} cot 2^{2+\dots+log_{10} cot 89^{5})}}$ is (a) 0 (b) $\frac{1}{e}$ (c) 1 (d) e								
66.	The to	otal number of select	tions of	at most n things from	(2n + 1) different things is 63	3. Then	the value of n is
(a)2. ${}^{45}C_{15}$ (b) ${}^{51}C_{20}$ (c)2. ${}^{50}C_{20}$ (d)None of these66.The total number of selections of at most n things from $(2n + 1)$ different things is 63. Then the value of n is (a)4(b)3(c)2(d)None of these67.A total numbers of words which can be formed out of the letters a, b, c, d, e, f taken 3 together such that each word contains at least one vowel is (a)48(b)96(c)72(d)None of these68.A father with 8 children takes them 3 at a time to zool-gether more than once. The number of times each child will go to the garden is (a)112(b)21(c)56(d)None of these69.A dictionary is printed consisting of 7 lettered words only than can be made with a letter of the word DERICKET. If the words are printed at the alphabetical order, as in an ordinary dictionary, then the number of word before the word CRICKET is (a)481(b)530(c)531(d)48070.If a, b, c are three natural numbers in A.P. and a + b + c = 21. Hen the possible number of values of the ordered triplet (a, b, c) is (a)13(b)15(c)14(d)None of these71.A question paper is divided into two parts A and B and each part is upustors from each part is which a candidate can answer 6 questions selecting at least two questions from each part is (a)200(b)100(c)80(d)None of these72.The value of $e^{(log_{18} \cot 1^{2} + log_{10} \cot 2^{2} + + log_{10} \cot 8^{2^{2}})$ is14(d) <t< td=""></t<>								
67.	word	contains at least one	vowel	is				-
68.					0 0			nout taking the same 3
	(a)	112	(b)	21	(c)	56	(d)	None of these
69.	If the	words are printed at	0		•			
	(a)	481	(b)	530	(c)	531	(d)	480
70.	triplet	(a, b, c) is				-		
71.	-							he number of ways in
(a)2. ${}^{45}C_{15}$ (b) ${}^{51}C_{20}$ (c)2. ${}^{50}C_{20}$ (d)None of these66.The total number of selections of at most n things from $(2n + 1)$ different things is 63. Then the value of n is (a)4(b)3(c)2(d)None of these67.A total numbers of words which can be formed out of the letters a, b, c, d, e, f taken 3 together such that each word contains at least one vowel is (a)48(b)96(c)72(d)None of these68.A father with 8 children takes them 3 at a time to zoological gardens, as often as he can without taking the same 3 children together more than once. The number of times each -itild will go to the garden is (a)112(b)21(c)56(d)None of these69.A dictionary is printed consisting of 7 lettered words only that can be made with a letter of the word before the word CRICKET. If the words are printed at the alphabetical order, as in an ordinary, then the number of word before the word CRICKET is (a)481(b)530(c)531(d)48070.If a, b, c are three natural volume triplet (a, b, c) is (a)13(b)15(c)14(d)None of these71.A question paper is divided into two guestions selecting at least two questions from each part is which a candidate can answer 6 questions selecting at least two questions from each part is (a)200(b)100(c)80(d)None of these								
72.	The v	alue of $e^{(\log_{18} \cot 1^\circ + $	log ₁₀ cot 2	$2^{\circ} + + \log_{10} \cot 89^{\circ}$ is				
	(a)	0	(b)	$\frac{1}{e}$	(c)	1	(d)	e

73. $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 85^\circ + \sin^2 90^\circ =$

(a)
$$9\frac{1}{2}$$
 (b) 9 (c) 8 (d) 7

74. If $\log_{\cos x} \sin x = 0.5$, when $0 < x < 90^{\circ}$, then the value of $\cos x =$

(a)
$$\frac{\sqrt{5}+1}{4}$$
 (b) $\frac{\sqrt{5}-1}{4}$ (c) $\frac{\sqrt{5}-1}{2}$ (d) $\frac{\sqrt{5}+1}{2}$

* * * * *

75. If $\frac{\cos^4 \alpha}{\cos^2 \beta} + \frac{\sin^4 \alpha}{\sin^2 \beta} = 1$ then the value of $\frac{\cos^4 \beta}{\cos^2 \beta} + \frac{\sin^4 \beta}{\sin^2 \alpha}$ is equal to (a) 0 (b) 1 (c) 2 (d) 4

Date: 21.10.2022

JB 2 MR BATCH PHYSICS : PART TEST SET-A ANSWER KEY Topic: FLT

1.	(a)	2.	(c)	3.	(b)	4.	(b)	5.	(b)
6.	(a)	7.	(a)	8.	(c)	9.	(c)	10.	(a)
11.	(a)	12.	(a)	13.	(a)	14.	(a)	15.	(d)
16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(a)	22.	(c)	23.	(d)	24.	(c)	25.	(d)

CHEMISTRY : PART TEST SET-A ANSWER KEY Topic: FLT

26.	(d)	27.	(b)	28.	(d)	29.	(d)	30.	(a)
31.	(b)	32.	(b)	33.	(b)	34.	(c)	35.	(a)
36.	(d)	37.	(a)	38.	(a)	39.	(b)	40.	(c)
41.	(a)	42.	(b)	43.	(b)	44.	(b)	45.	(c)
46.	(b)	47.	(b)	48.	(d)	49.	(b)	50.	(a)

MATHEMATICS : PART TEST SET-A ANSWER KEY Topic: FLT

51.	(b)	52.	(d)	53.	(d)	54.	(c)	55.	(a)
56.	(a)	57.	(b)	58.	(a)	59.	(b)	60.	(a)
61.	(a)	62.	(d)	63.	(b)	64.	(d)	65.	(b)
66.	(d)	67.	(b)	68.	(b)	69.	(b)	70.	(a)
71.	(a)	72.	(c)	73.	(a)	74.	(c)	75.	(b)